Shared Mobility

Managing the Transition to Shared Automated Vehicles: Building Today While Designing for Tomorrow

Shared

By Susan Shaheen and Adam Cohen

We often get asked questions from urban planners, policymakers, and real estate professionals asking how they should prepare for the future of mobility, today. Some are architects and developers wanting to know how their buildings and planned communities should be designed in a shared automated future. Some are planners and policymakers wanting to know if and how their zoning and building codes should be amended to prepare.

In an automated future, cities could change in three fundamental ways:

  1. The density of urban centers is likely to increase, as shared automated vehicles impact reliance on private vehicle ownership and use. Even if privately owned, automated vehicles would no longer need to be parked in a city’s highest valued real estate. Instead, these vehicles could self-drive and park away from residential, employment, and other activity centers. As such, auto-oriented land uses, such as parking, gas stations, and auto dealerships, could be redeveloped into housing, offices, and other land uses following principles of highest and best use. The four criteria guiding the highest and best use of real estate are: 1) legal permissibility, 2) physical possibility, 3) financial feasibility, and 4) maximum productivity.
  2. Suburban and exurban areas are likely to expand, particularly in regions with high costs of living and a lack of affordable housing. With telecommuting growth, fewer work days in the office, and automated vehicles, longer commutes could become less of an impediment. Vehicle automation has the potential to transform commutes from lost driving time into productive hours that could be spent working, relaxing, or resting.
  3. A reduction in parking is likely, although estimating the precise reduction is difficult and will likely be regional based on automated vehicle ownership rates, the built environment and walkability of a city, and the availability of high quality public transportation and on-demand mobility options. Parking is a very expensive addition to most real estate projects, and the vast majority is unpaid with no return on investment. A reduction in parking demand can free up land and capital to make other property improvements, such as increased density and public spaces.

 

Figure 1: Five Common Built in Environments in the U.S. Source: Shaheen et al., 2017

 

To prepare for the impact of automated vehicles on real estate, designing for adaptable parking infrastructure that can be repurposed, renovated, or redeveloped in the future is key.

While the industry may not be ready to remove parking for automated vehicles today, the ability to repurpose, renovate, and redevelop in the future starts with thoughtful planning today. The ability to adapt parking in the future is critical for two reasons:

  1. Planning for parking adaptability can extend the economic lifespan of a property or a development project, and
  2. It reduces the potential for future grayfield sites and makes such sites easier to improve, revitalize, and redevelop with minor modifications and capital expenditures.

Plainly stated, parking adaptability has the potential to minimize and mitigate future grayfield blight due to an over supply of underused parking in the future. Architects, engineers, and developers should design for adaptable parking today. And cities should require it as part of local building codes. Here are some tips that can be incorporated into parking and facility design today to help ensure flexibility in transitioning to a shared electric connected and automated vehicle future.
 

Recommendations for Residential Design

A number of strategies exist to help make residential garages more adaptable to renovation. Designing for future utility requirements, such as heating, ventilation, and cooling, as well as fire exits is key. Additionally, local governments should consider potential zoning and building code amendments to accommodate the renovation of garages into single housing units (with a separate kitchen, laundry, and full bathroom). Allowing for these types of conversions could increase the overall housing supply, enhance affordability (both by increasing supply and creating a rental unit), and increase suburban residential density.
 

Recommendations for Structured Parking Design

Similarly, a number of strategies exist to make structured parking more adaptable to repurposing, renovation, and redevelopment. Developers and facility managers in need of more parking for a limited period of time could consider modular parking systems designed to be moved, reconfigured, or deconstructed for other uses. One company, MORE PARK, offers a modular structure that installs over existing surface parking in just a few weeks. This could provide an option for sites that need more parking today without the permanence of a traditional parking structure and the flexibility to quickly convert a parcel for future development.
In addition to interim modular parking facilities, developers and facility managers constructing new structured parking today, should consider:

 

Parking today should be viewed as open buildings in prime locations for low cost, transformative development in the future. Both residential garages and structured parking should be designed with flexibility in mind to accommodate transitions to “live-work” land uses.

 
To plan for the transition to automated vehicles, cities and county governments should develop building and zoning codes that not only accommodate adaptable parking but encourage it by design. This can include amending building codes to require infrastructure that makes transforming garages into inhabitable buildings possible. As automated vehicles begin to enter the marketplace, cities should consider incentives and other programs to begin the conversion of ground level parking to commercial uses. Cities and state governments can encourage the long-term transition of parking to help minimize future grayfield blight by offering grants, financing, and other incentives to encourage transitioning parking to new uses as automated vehicles become more mainstream. Together, transportation, real estate professionals, and policymakers need to identify potential alternative uses that could occupy existing parking, if repurposed or renovated. They should also consider collaborating to develop a legal framework that is conducive to adapting and converting existing parking for other uses.
(Susan Shaheen is a pioneer and internationally recognized expert in shared mobility. She is also actively involved in researching automated vehicles and alternative fuel vehicles. She is an adjunct professor in Civil and Environmental Engineering and Co-Director of the Transportation Sustainability Research Center (TSRC) of the Institute of Transportation Studies at the University of California (UC), Berkeley.
Adam Cohen is a shared mobility researcher at TSRC, UC Berkeley. Since joining the group in 2004, his research has focused on innovative urban mobility solutions, including shared mobility, Smart Cities technologies, smartphone apps, and other emerging technologies.)

Exit mobile version